Программная среда Windows
Рассмотрим наиболее важные моменты работы Windows и принципы взаимодействия программ с ней.
Интерфейс вызовов функций в Windows
Благодаря данному интерфейсу доступ к системным ресурсам осуществляется через целый рад системных функций. Совокупность таких функций называется прикладным программным интерфейсом, или API (Application Programming Interfase). Для взаимодействия с Windows приложение запрашивает функции API, с помощью которых реализуются все необходимые системные действия, такие как выделение памяти, вывод на экран, создание окон и т.п.
Библиотека MFC инкапсулирует многие функции API. Хотя программам и разрешено обращаться к ним напрямую, все же чаще это будет выполняться через соответствующие функции-члены. Как правило, функции-члены либо аналогичны функциям API, либо непосредственно обращаются к нужной части интерфейса.
Библиотеки динамической загрузки (DLL)
Поскольку API состоит из большого числа функций, может сложиться впечатление, что при компиляции каждой программы, написанной для Windows, к ней подключается код довольно значительного объема. В действительности это не так. Функции API содержатся в библиотеках динамической загрузки (Dynamic Link Libraries, или DLL), которые загружаются в память только в тот момент, когда к ним происходит обращение, т.е. при выполнении программы. Рассмотрим, как осуществляется механизм динамической загрузки.
Динамическая загрузка обеспечивает ряд существенных преимуществ. Во-первых, поскольку практически все программы используют API-функции, то благодаря DLL-библиотекам существенно экономится дисковое пространство, которое в противном случае занималось бы большим количеством повторяющегося кода, содержащегося в каждом из исполняемых файлов. Во-вторых, изменения и улучшения в Windows-приложениях сводятся к обновлению только содержимого DLL-библиотек. Уже существующие тексты программ не требуют перекомпиляции.
Win16 или Win32
В настоящее время широко распространены две версии API. Первая называется Win16 и представляет собой 16-разрядную версию, используемую в Windows 3.1. Вторая, 32-разрядная версия, называется Win32 и используется в Windows 95 и Windows NT. Win32 является надмножеством для Win16 (т.е. фактически включает в себя этот интерфейс), так как большинство функций имеет то же название и применяется аналогичным образом. Однако, будучи в принципе похожими, оба интерфейса все же отличаются друг от друга. Win32 поддерживает 32-разрядную линейную адресацию, тогда как Win16 работает только с 16-разрядной сегментированной моделью памяти. Это привело к тому, что некоторые функции были модифицированы таким образом, чтобы принимать 32-разрядные аргументы и возвращать 32-разрядные значения. Часть из них пришлось изменить с учетом 32-разрядной архитектуры. Была реализована поддержка потоковой многозадачности, новых элементов интерфейса и прочих нововведений Windows.
Так как Win32 поддерживает полностью 32-разрядную адресацию, то логично, что целые типы данных (intergers) также объявлены 32-разрядными. Это означает, что переменные типа int и unsignerd будут иметь длину 32 бита, а не 16, как в Windows 3.1. Если же необходимо использовать переменную или константу длиной 16 бит, они должны быть объявлены как short. (дальше будет показано, что для этих типов определены независимые typedef-имена.) Следовательно, при переносе программного кода из 16-разрядной среды необходимо убедиться в правильности использования целочисленных элементов, которые автоматически будут расширены до 32 битов, что целочисленных элементов, которые автоматически будут расширены до 32 битов, что может привести к появлению побочных эффектов.
Другим следствием 32-разрядной адресации является то, что указатели больше не нужно объявлять как near и far. Любой указатель может получить доступ к любому участку памяти. В Windows 95 и Windows NT константы near и far объявлены (с помощью директивы #define)пустыми.
Интерфейс GDI
Одним из подмножеств API является GDI (Graphics Device Interfase – интерфейс графического устройства). GDI – это та часть Windows, которая обеспечивает поддержку аппаратно-независимой графики. Благодаря функциям GDI Windows-приложение может выполняться на самых различных компьютерах.
Многозадачность в Windows
Как известно, все версии Windows поддерживают многозадачность. В Windows 3.1 имеется только один тип многозадачности – основанный на процессах. В более передовых системах, таких как Windows 95 и Windows NT, поддерживается два типа многозадачности: основанный на процессах и основанный на потоках. Давайте рассмотрим их чуть подробнее.
Процесс
– это программа, которая выполняется. При многозадачности такого типа две или более программы могут выполняться параллельно. Конечно, они по очереди используют ресурсы центрального процессора и с технической точки зрения, выполняются неодновременно, но благодаря высокой скорости работы компьютера это практически незаметно.
Поток
– это отдельная часть исполняемого кода. Название произошло от понятия “направление протекания процесса”. В многозадачности данного типа отдельные потоки внутри одного процесса также могут выполняться одновременно. Все процессы имеют по крайней мере один поток, но в Windows 95 и Windows NT их может быть несколько.
Отсюда можно сделать вывод, что в Windows 95 и Windows NT допускается существование процессов, две или более частей которых выполняются одновременно. Оказывается, такое предположение верно. Следовательно, при работе в этих операционных системах возможно параллельное выполнение, как программ, так и отдельных частей самих программ. Это позволяет писать очень эффективные программы.
Есть и другое существенное различие между многозадачностями Windows 3.1 и Windows 95/NT. В Windows 3.1 используется неприоритетная многозадачность. Это означает, что процесс, выполняющийся в данный момент, получает доступ к ресурсам центрального процессора и удерживает их в течение необходимого ему времени. Таким образом, неправильно выполняющаяся программа может захватить все ресурсы процессора и не давать выполняться другим процессам. В отличие от этого в Windows 95 и Windows NT используется приоритетная многозадачность. В этом случае каждому активному потоку предоставляется определенный промежуток времени работы процессора. По истечению данного промежутка управление автоматически передается следующему потоку. Это не дает возможность программам полностью захватывать ресурсы процессора. Интуитивно должно быть понятно, что такой способ более предпочтителен.
Взаимодействие программ и Windows
Во многих операционных системах взаимодействие между системой и программой инициализирует программа. Например, в DOS программа запрашивает разрешение на ввод и вывод данных. Говоря другими словами, не- Windows-программы сами вызывают операционную систему. Обратного процесса не происходит. В Windows все совершенно наоборот: именно система вызывает программу. Это осуществляется следующим образом: программа ожидает получения сообщения от Windows. Когда это происходит, то выполняется некоторое действие. После его завершения программа ожидает следующего сообщения.
Windows может посылать программе сообщения множества различных типов. Например, каждый раз при щелчке мышью в окне активной программы посылается соответствующее сообщение. Другой тип сообщений посылается, когда необходимо обновить содержимое активного окна. Сообщения посылаются также при нажатии клавиши, если программа ожидает ввода с клавиатуры. Необходимо запомнить одно: по отношению к программе сообщения появляются случайным образом. Вот почему Windows-программы похожи на программы обработки прерываний: невозможно предсказать, какое сообщение появиться в следующий момент.